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Abstract. A general theory of oscillations in the exchange coupling J between two transition
metal ferromagnets separated by a non-magnetic transition metal spacer is developed.
Detailed calculations of J as a function of the spacer layer thickness are made for a specific
model based on a simple cubic tight-binding band structure. For a suitable choice of band
filling a good account is given of the main features observed in Co/Ru, Co/Cr and Fe/Cr
layered structures. An anaiysis of the numerical accuracy required in computing J from a
total energy difference is given and this throws some light on difficulties experienced by
previous workers using this approach. A general expression for 7 is obtained for an arbitrary
band and finite temperature in the limit of large spacer thickness. A close analogy between
oscillations in the exchange coupling and de Haas-van Alphen oscillations is established and
the relation to RKKY theory is also discussed. It is shown that the period, asymptotic decay
and temperature dependence of the oscillations in J are determined by properties of the
Fermi surface of the spacer layer.

1. Introduction

Antiferromagnetic coupling between the iron layers in Fe/Cr/Fe sandwiches has been
observed in light scattering experiments by Griinberg et al (1986) and confirmed by the
SPLEED measurements of Carbone and Alvarado (1987). Similar behaviour was found
inFe/Crsuperlattices, by means of magnetization me asurements and neutron diffraction
(Baibich et al 1988). Typically the antiferromagnetic coupling was observed in these
experiments when the thickness of the chromium layer was less than 20-30 A. Recently
Parkin et al (1990) reported long-period oscillations in the exchange coupling as a
function of the thickness of the non-magnetic layer in Co/Ru, Co/Cr and Fe/Cr super-
lattice structures. Similar well-defined oscillations with a somewhat shorter period were
observed earlier in Gd/Y superlattices by Majkrzak ef al (1986) and interpreted in terms
of RKKY coupling by Yafet {1987). The oscillations observed by Parkin e af (1990) are
also reminiscent of RKKY oscillations but the period, 15-20 A in all cases, is unexpectedly
long. The observed coupling energy is far too large to be explained by magnetostatic
interactions. The measurements of Parkin et af (1990) are particularly important since
they provide us with a large number of specific results to be explained by theory. The
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period, amplitude, initial sign, asymptotic rate of decay and temperature dependence
of the coupling were all determined by Parkin et al {1990) for Co/Ru, Co/Cr and Fe/Cr
structures.

Existing quantitative theories (Levy et al 1990, Hasegawa 1990, Stoeffler et af 1991)
using realistic band structures are restricted to spacer layers of only a few atomic planes
and are valid only at zero temperature. Calculations of the magnitude of the coupling
by comparing the total energies of the ferromagnetic and antiferromagnetic con-
figurations are numerically difficult (Hasegawa 1990) and do not lead to results of the
correct order of magnitude (Levy et al 1990, Stoeffler et al 1991). Moreover, the physical
origin of the computed effects remains obscure.

iIn this paper we present a theory of the exchange coupling of two transition metal
ferromagnets separated by a non-magnetic transition metal spacer layer. The theory,
even in its simplest form (Edwards and Mathon 1991}, accounts qualitatively correctly
for all the features of the exchange coupling observed by Parkin et af (1990). The origin
of the effect is explained and it is made clear how the present theory can be used to
predict specific materials and layer orientations for which long-period oscillations of the
exchange coupling should occur.

The plan of the paper is as follows. In section 2 a new mechanism of the exchange
coupling across a transition metal spacer is proposed and a mathematical model of the
coupling is formulated. The model is then applied in section 3 to a {100) sandwich with
a simple cubic tight-binding band at 7 = 0. An exact analytic formula for the exchange
coupling is derived and investigated for large thicknesses of the spacer layer. A con-
nection with RKKY is also briefly discussed. In section 4 we consider a more general band
and arbitrary layer orientations at finite temperatures. A close analogy between our
theory and the theory of de Haas—van Alphen effect is established and a quite general
asymptotic formulafor the exchange couplingisderived. It relatesthe period, amplitude,
rateof decay and temperature dependence of oscillations in the coupling to the properties
of the Fermi surface in the spacer layer. In section 5 the results of numerical calculations
of the exchange coupling both at T = 0 and at finite temperatures using a simple cubic
tight-binding band are presented and compared qualitatively with experiment. Also in
section 5 the exact asymptoticresuits of sections 3and 4, together with our own numerical
studies, are used to examine critically the existing numerical calculations of the exchange
coupling referred to earlier. Finally, the formulation of the RKKY interaction for planar
structures is discussed and the RKKY range function in the planar geometry is evaluated
for a simple cubic tight-binding band. The results are compared with our theory of the
exchange coupling.

2. Exchange coupling mechanism

We consider a sandwich consisting of two thick layers of a ferromagnetic transition metal
separated by N atomic planes of a non-magnetic transition metal. The ferromagnetic
metal is assumed to have a full majority spin d band and a partially occupied spin minority
d band. The nonmagnetic metal has equal numbers of holes in each spin sub-band. The
spin sub-bands in the ferromagnetic and non-magnetic spacer layers, together with the
hole densities p 1, p , , are shown schematically in figures 1(a) and 1(b) for the parallel
and antiparallel orientations of the ferromagnetic layer moments. For simplicity we
assume that the number of d holes per atom of each spin in the bulk non-magnetic metal
is equal to the number of holes in the bulk ferromagnetic metal. The basic mechanism
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Figure 1. Schematic representation of the densities of states in the d band and of the densities
of holes in a sandwich for ferromagnetic (a) and antiferromagnetic (b) alignments of the
magnetic layers.

for exchange coupling described below does not depend on this precise condition.
However, it is a reasonable approximation to the actual situation in Fe/Cr, Co/Ru and
Co/Cr systems.

It is clear from figure 1 that deviations from bulk hole densities occur in the spacer
layer near the interfaces with the ferromagnetic layers. For the parallel configuration,
figure 1(a), both interface effects occur in the | -spin hole density and, therefore,
interfere witheach other. Inthe antiparallel configuration, however, the interface effects
at each end of the spacer layer occur in opposite spin densities and no interference takes
place. The exchange coupling between the ferromagnetic layers, which is given by the
difference in energy between the two configurations, is therefore determined entirely
by the interference effect in the down-spin band of the spacer layer.

To investigate this effect quantitatively we use a single-orbital tight-binding Ham-
iltonian

H= Et;jc$6j0+2anj¢n;¢ (21)
Li.o i

where ¢}, creates a hole of spin ¢ on site i and n,, = ¢};c,,. We assume the hopping
parameters #; are the same in both metals and U; = = for sites { in the ferromagnetic
layers and U; = 0 in the spacer layer. The choice U, = = in the ferromagnetic layers
means that there exist exact single-determinant eigenfunctions of the Hamiltonian
corresponding to the configurations shown in figures 1{a) and 1(b). This is because the
interactions U, play no role; electrons of opposite spin completely avoid each other
except in the spacer layer where U; = 0. The total energies of the two configurations
may, therefore, be calculated as sums of one-electron energies. To do this, we initially
maintain the bulk Fermi energy £ everywhere. It is convenient to introduce the total
energy E,,(N) of holes of one spin confined in N atomic planes and the energy Ej per
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atomic plane of holes of one spin in the bulk. If we suppose that each ferromagnetic
layer in the sandwich contains M atomic planes, where M is large, then the energies of
the configurations of figures 1(«) and 1(b) are, respectively, given by

Eyy =Eu(N)+ (ZM + N)E; 2.2)

E |t = E(2M + 2N). (2.3)
The energy difference is therefore

AE(N)=Et; = Ey = E(N) = EQM +2N) (24)
where

E(N)= E(N) — NEy (2.5)
As M-—> >,

AE(N) = E(N) - E(=) (2.6)

andclearly from (2.5) £(/N) may be considered as the energy of holes of one spin confined
to /¥ atomic planes measured relative to an N-plane reference state with bulk density.
Thus E(N) describes only the end effects and the energy difference in (2.6) corresponds
just to the energy associated with the interference between the two end effects.

To conserve the number of particles in calculating the energy difference we must
consider the changes in the number of holes that result from keeping Ef fixed. If v(N)
is the number of holes of one spin confined in N atomic planes and ng is the number of
holes per bulk plane, we define

n(N) = v(N) — Nng 2.7
in analogy with (2.5). We now introduce the thermodynamic potential
Q(N) = E(N) — Epn(N) (2.8)

which, like E(N), is measured relative to areference state with N bulk planes. Inanalogy
with (2.6) the energy difference between the ferromagnetic and antiferromagnetic
configurations of the sandwich with particle numbers conserved is given by

AQN) = Q(N) — Q(=). 2.9)

Following Parkin et af (1990), we define an exchange coupling constant for a spacer
laver containing N atomic planes by

J(N) = AQ(N)/A (2.10)

where A is the area of an atomic plane.

The above considerations are readily generalized to a superlattice with alternating
magnetic and non-magnetic layers containing, respectively, M and N atomic planes. The
energy difference per magnetic layer between the ferromagnetic and antiferromagnetic
configurations is then

Q(N) —Q(2N + M). (2.11)

The difference between this result and AQ({N) given by (2.9) is small for large M. Even
for smmall M the difference is not significant for large N since it emerges in section 3 that
Q(N) = 1/N?and hence

[Q(N) — Q2N)| = (3/4) IQN) — Q(=)|. (2.12)
In this paper we focus our attention primarily on AQ(N) given by (2.9).
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In the next section we calculate Q(N), and bence J(N), for a simple cubic band at
T = 0 and in section 4 we consider a more general situation at finite temperatures.

3. Model with a simple cubic tight-binding band at T =0

We consider a simple cubic lattice with basic vectors a(1, 0, 0), «(0, 1, 0) and a(0, 0, 1)
and take the atomic planes of the sandwich to be perpendicular to the third of these
vectors. We take #; = ¢ (1 <0) for i, j nearest neighbours and #; = 0 otherwise. It is
convenient to consider a non-magnetic layer with N — 1 atomic planes rather than NV
and we label them by integers 1,2, ..., N — 1. To calculate Q(N — 1) we must consider
the electrons as confined within the non-magnetic layer so that their wave functions
vanish on planes 0 and N. The normalized wave functions are, therefore, of the form
©  N-1

Y X X explitk,l + k,m)a] sin

1=—mm=—mp=1

rmp

~ |'mp) (3.1)

where |Imp) is the orbital on site a(l, m, p) and the wave function is classified by the two-

dimensional wave vector (k,, k,) and a discrete quantum numberr=1,2,.. . , N -1
The corresponding one-electron energy is
e(k,, ky,r) = —(cos(r/N) + cos(k,a) + cos(k,a)). (3.2)

Throughout this section we measure all energies in units of 2||. Clearly at T = 0
QN — 1) = QN — 1) + Qe N — 1)
= 2 (S(kx:kysr)_ EF) G(EF_ E(kxakyar)) (33)

r.kz.ky
where 8(x) is the unit step function and
QN — 1) = (N - 1) (EB - nBEF) (34)

corresponds to the reference state. This term just cancels the part of the right-hand side
of (3.3) that is proportional to N — 1, and the part that tends to a constant as N— «
cancels out in calculating AQ(N — 1) from (2.9). Hence AS (N — 1) is given by the part
of (N — 1) that tends to zero as N— =,

The summation over &, k, in (3.3) can be turned into an energy integral involving
the two-dimensional density of states N,p(E)

N-1
Qu(N-1)= 2, de Nop(E) (—cos(ra/N) + E — E¢)6( Er + cos(rz/N) — E).
i (3.5)

This expression may be used to determine AQU{N — 1) numerically, as is discussed in
section 5. However, it is instructive to obtain some analytical results by approximating
the density of states Np(E} as follows:
(1/2.75)N" |E|<2
Nao(E) = { 3.6
m(E) 0 E|> 2. (3.6)

Here, Njis the number of lattice sites in one atomic plane. This is an exact representation
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of Nyp(E) at the band edges but underestimates it elsewhere. However, numerical
calculations show that such an approximation reproduces all the essential features of
AQ(N — 1)when —3 < Ep < —1. Furthermore, with this approximation the asymptotic
form of AQ(N — 1) for large N is obtained exactly. We now proceed to evaluate Q,, for
—3 < Ep < -1 with the approximation (3.6).

On evaluating the integral in (3.5) we find

QulN = 1)= =71 2 0) (57
with
f(x) = (cos?(zx/N) + 2e cos(mx/N) + a?)B(§ — x) (3.8)
where ¢ = Fp + 2 and
= (N/m) cos™!(—ea) 0<E<N. (3.9)

The summation in (3.7) may be carried out explicitly but the result is not very illumi-
nating. It is more convenient to use the Poisson summation formula

YO + Sf =g +2 3 g0ms) (3.10)
r=1 5=
where
8)= [ £ costeat (.11
0
Hence
_ 2sin(Er) ( 207 -1 a? ) 6Na(1 — a?)'/? cos(&r)
g0 = t (Nifm)? —4  (Ni/m)2 =1/  a[(Nt/n)? — 1][(Nt/2)? ~

(3.12)

As discussed earlier AQ(N — 1) is the part of Q. (N — 1) that tends to zeroas N— o
and this corresponds to replacing the sum in (3.7) by the last term of (3.10). Hence

AQ(N—-1)= 2‘, 8(27s). (3.13)
T set
For a spacer layer containing more than about three atomic planes it is a good approxi-
mation to use the asymptotic form of each term in (3.12) thus neglecting terms of the
order 1/N*, Using (3.9) and (2.10) with. A = Nja®, we then obtain the exchange coupling
J(N — 1) in the form

1 < Er+ 1)(Ep+3) . 2msN
e e
© 27s
2N = (Ep + 2)[—(Er + D)(Ef + 3)]2 cos N:v) (3.14)
where + holds for E¢ > —2 and — holds for Ex < —2, and N, is given by
N, = mjcos™}|2 + Eg|. (3.15)

As Ep— =1, J(N — 1)— 0 and, in fact, we find that in the present approximation
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AQ(N — 1) = Othroughout theregion —1 < Eg < 0, However, it will be shownin section
4 that the latter result is the consequence of the approximation (3.6) to Nop(E).

It is clear from (3.14) that the exchange coupling J oscillates with period N, and with
an amplitude that decays as 1/N? for large N. The period becomes long when Er is near
—3 or —1. The former case corresponds to a very low hole density with a small almost
spherical Fermi surface. The latter case is more interesting and corresponds to the Fermi
surface nearly touching the zone boundary. In the present model the coupling strength
weakens as the period lengthens because of the factor (Eg + 1)(Er + 3) in (3.14). The
relation between the period and the caliper measurement of the Fermi surface, and
between the amplitude and the curvature of the Fermi surface at its extremal points, is
discussed for a general band in section 4. An asymptotic expression for J(N — 1}, correct
to order 1/N?, is derived there for a general band. It agrees with the first term of (3.14)
for the present model. The close relationship between this asymptotic result and RKKY
coupling is also discussed in section 5. From the RKKY point of view the overall strength
of the coupling should depend on a product of the appropriate susceptibility of the spacer
layer material and the square of the exchange coupling between the magnetic and non-
magnetic layers. It is not clear how to calculate the latter coupling in general and an
advantage of the present method is that this problem does not arise. The numerical
calculations described in section 5 show that the overall strength of the coupling J
obtained in our approach is of the right order of magnitude to agree with experiment.

Finally we point out that the close correspondence with RKKY is restricted to the
asymptotic limit where only terms of order 1/N? are important. This is clearly seen in
the low-density limit when £y + 3 is small. The spacer layer of thickness d = Na
then corresponds to a gas of holes with a spherical Fermi surface of radius k¢ given by
k%a’/2 = E; + 3. The leading term (s = 1) in the sum (3.14) is then equal to a positive
constant times a factor

— (1/d?) (sin(2ked) + 3 cos(2kpd)/2kzd). (3.16)

A simple RKKY theory of the exchange coupling between two planes of spins, distance 4
apart, in the same spacer medium yields the following expression for the corresponding
factor:

— (1/d?) (sin(2ked) — cos(2ked)/2k=d). (3.17)

4. Generalization of the model to an arbitrary band and finite temperatures

We showed in section 3 that the calculation of the exchange coupling in a sandwich
reduces to the calculation of the total energy of carriers trapped in the non-magnetic
spacer by the exchange potentials of the ferromagnetic Jayers. Since the exchange
potentials are equivalent in our model to two infinitely high potential barriers, we simply
require the dependence of the total energy of size-quantized carriersin a layer of N — 1
atomic planes on the thickness of the layer d = Na. This is a familiar problem in the
theory of the de Haas—van Alphen effect. In the case of de Haas—van Alphen oscillations,
the carrier energy is quantized by a magnetic field in a plane perpendicular to the
field whereas, in the present problem, one-dimensional quantization in the direction
perpendicular to the sandwich is induced by the exchange potential,

Itis well known that the amplitude, period and temperature dependence of de Haas—
van Alphen oscillations are linked directly to the shape of the Fermi surface. It is our
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aim toshow that a similar general relationship exists between oscillations of the exchange
coupling and the shape of the Fermi surface of carriers in the spacer layer.

Our calculation is an adaptation of the conventional theory of the de Haas-van
Alphen effect (see, e.g., Abrikosov 1972). As in section 3, we consider the thermo-
dynamic potential of carriers confined in the spacer layer

u— E(k, r))

- (4.1)

where u is the chemical potential, E(k, r) is the carrier energy, k is the wavevector
parallel to the sandwich, and r labels the size-quantized levels (kg = 1). At T=0, we
have y = E and (4.1) clearly reduces to Q,,, defined in section 2.

To evaluate the sum in (4.1), we need to know the explicit dependence of E(k, r) on
the discrete quantum number r. Without loss of generality, we may assume that k liesin
the (x, y) plane and quantization takes place in the z direction. We then know from
section 3 that the quantization of the energy for a sc tight-binding band reduces to the
quantization k. = rt/Na in the expression for the bulk energy £(k,, k,, k,). One can
easily show that the same quantization holds for any single band and any orientation of
the sandwich. Hence we have quite generally

E(k,, ky,r) = elk,, k,, rn/Na) (4.2)

where a is the separation between two neighbouring atomic planes in the spacer layer.

As in section 3, we can replace the sum over rin (4.1) by an integral using Poisson’s
summation formula and use the result already proved in section 3 that the oscillatory
contribution to £, is in fact the required exchange energy AS2. The exchange energy
per unit area is, therefore, given by

ReEHdk dk,

Q= -T2 n (1 + exp
ko

=" (2)2

x f deIn{l + expl(u — e(ky, k,, En/Na))/T] exp(2mist)  (4.3)
u)

where the integral with respect to k,, &, is over the two-dimensional Brillouin zone in
the sandwich plane.
Adfter integration by parts the real part of the integral over £ becomes:

N-1
Re (MLT , dC'g%{l + exp(e(k,, k,, L) — u)/ T} eXP(ZJriSC))- (4.4)

To obtain (4.4) we used the result that the Fermi function is approximately zero for ¢ at
the top of the band. This is valid provided the distance from the Fermi level to the top
of the band is much larger than T.

We can now change the integration over { to an integration over energy. The
exchange coupling then takes the form

> N—1
I= =R 32 [ dett + exple = /T [ [ ak, ak, explaisNak,).  4.5)
§=1 0 BZ

We shall next evaluate the two-dimensional integral with respect to ,, k,. The com-
ponent & in this integration is 2 dependent variable and we can use the bulk tight binding
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energy formula e(k,, k,. ;) to express k, =k, (g, k,, k). It is clear that for large N the
factor exp(2isNak,) is a rapidly oscillating function and only those regions in the (k,, k,)
plane in which £, is stationary with respect to k., &, will make significant contributions
to the integral. We can, therefore, apply the method of stationary phase in which the
required integral is approximated by expanding &, in a Taylor series about its stationary
points up to second-order terms.

Let us assume that (k3(¢), k%(¢)) is a stationary point. It can be always achieved by
a suitable rotation in the (k. &,) plane that the Taylor expansion about (4)(<), k3(e))
takes the simple form

ka(€, key ky) = k. (e, k3, &3) + (92K, /ok3) (kS - k,)?
+(O2k, fOkJ) (R — ey )] + . (4.6)

When this result is substituted in (4.5) the two-dimensional integral in the (k,, k,) plane
separates into two independent integrals with respect to &, and k, and each of them can
be evaluated exactly. We obtain

~1/2

ad exp(2isNak?) 4.7)

3%k, 9%k,
sNa

J' f Ak, dk, exp(lisNak.) = 0 o | = S

BZ

where &2 is the stationary value of &, and both the partial derivatives are taken at the
stationary point (k3 (£), k)(¢)). The factor o is equal to exp(izr/2) when both derivatives
in (4.7) are positive, it is equal to exp(—iz/2) when they are negative and o = 1 when
the two derivatives have opposite signs.

It remains to perform the energy integralin (4.5). The integrand contains the product
of the Fermi function and the factor exp(2isNak?) which depends on energy via k2. The
region in which the Fermi function is essentially constant does not contribute to the
integral because of rapid oscillations of the function exp(2isNk?). The only significant
contribution comes from a narrow interval around the Fermi surface where the Fermi
function varies rapidly. Since k2 is a slowly varying function in this interval, it can be
expanded about u:

k3(e) = k() + 3k fae)(e —p) + .. .. (4.8)

Substituting the expansion (4.8} and the result (4.7) in (4.5} it is straightforward to
evaluate the energy integral in (4.5). This leads to the fcllowing general asymptotic
formula for the exchange coupling J defined by (2.10):

-1/ exp(2isNakd(y))
T~! sinh(2msNaT ak, /d¢)

o

Re Y

e
dzNa ;2 s

3k2 3k?:
3k: ak:

JN-1)=

(4.9)

where all the derivatives are taken at the stationary point and for £ = u, Naturally, the
contributions of all the stationary points of k, need to be included in (4.9).
It is clear from (4.9) that J(N) oscillates with a period N, given by

N, = r/akd(u) (4.10)

where &%(u) is the caliper measurement of the Fermi surface in the direction per-
pendicular to the layers. The temperature dependence of J is determined by the velocity
of carriers at the stationary points on the Fermi surface and the oscillation amplitude by
the curvature of the Fermi surface at the stationary points.
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As an illustration, and as a check on the general formula (4.9), we now apply it at
T = 0 to the simple cubic band already investigated in section 3. We assume again that
the z direction is normal to the layers and along 2 cubic axis. The Fermi surface for such
a band is given by

Er = —(cos(k,a) + cos(k,a) + cos(k,a)). (4.11)

It is, therefore, clear that the stationary points of &,( Er, k,, k,) are at (0, 0), (0, *x/a),
(= *r/a 0) and (+Jr/a *x/a). Since the band is symmetric about E = 0, there are just
two cases to be considered: —3 < Ex < —1 and -1 < E; <0. In the former case, the
only relevant stationary point is k, = k, = 0. Evaluating all the required derivatives in
(4.9) at this point we find that both the second derivatives are negative, which means
that o = —i. Taking then the limit T— 0, it is straightforward to show that (4.9) reduces
exactly to the first term in (3.14) of section 3.

Consider now the interval —1 < E¢ < 0. Using the approximation of a constant two-
dimensional density of states (Dos}, we found in section 3 no exchange coupling in this
interval. This is because the constant two-dimensional Dos corresponds to a band with
a parabolic dispersion in the {k,, k,) plane and it is clear from (4.11) that k, for such a
band has no extremuin at &, = &, = 0 for £z > —1. The exact treatment of the band
(4.11) for —1 < Ep < Oshows that additional extrema oceur at (0, =m/a) and (xx/a, Q)
and they are, in fact, the only extrema in this range of £. It is easy to show that the
sccond derivatives in (4.9) have opposite signs at all these stationary points (saddle
points), which means that ¢ = 1. Hence, in the range —1 < £¢ <0, the asymptotic
formula for J at T = 0 becomes

=

Ei -1 1 2msN o _
JN = 1) = =05 § SeST (4.12)
where the oscillation period N, is defined by
N, = ntfcos ™| Eg|. (4.13)

It is clear that oscillations of the exchange coupling with a long period occur not only for
Ep < —1 (as already shown in section 3) but also for E; > ~

We shall now return to the general formula (4.9). One can see from (4.9) that the
amplitude of oscillations in the exchange coupling decreases with increasing temperature
in the same way as the amplitude of de Haas—van Alphen osclilations. In fact, the sinh
factor has exactly the same form as in the de Haas~van Alphen effect (Abrikosov 1972)
if we make the correspondence

(N/x) a(k%a)/ae— 1/ham, (4.14)
where o, is the cyclotron frequency. Hence the equivalent ‘cyclotron’ frequency in the
present problem is Zw, = W/2N, where W is the band width. For N = 5-10 and W =
3 eV, we have ko, = 10° K corresponding to an equivalent field of about 10° T. Taking

account of the pumerical factors in the sinh factor, the temperature dependence our
theory predicts is on the scale =10% K, as observed by Parkin er af (1990).

5. Numerical studies for the simple cubic band and comparison with experiment

5.1. Exchange coupling at short distances

The general asymptotic formula (4.9) becomes poor for spacer layer thicknesses <5-10
atomic planes. To determine the initial sign and initial strength of the exchange coupling
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Figure 2. Comparison of the amplitudes and periods of oscillations in the exchange coupling
J as a function of the number of atomic planes NV in the spacer layer for two diiferent fillings
of the band: Ep = =2.5 (squares) and Ep = —1.05 (circles).

I(N), we need to evaluate numerically either (3.3) or (3.5). Direct evaluation of €2, in
(3.5) using the full two-dimensional tight-binding density of states for a square lattice is
straightforward and the J(N} curves for two values of the Fermi energy Er = —2.5 and
Eg = —1.05 are shown in figure 2.

There are three important differences between the two curves J(N) shown in figure
2. For the lower value of Ef the period is only three atomic planes but it becomes ten
atomic planes for Er = —1.05 when the Fermisurface nearly touches the zone boundary.
Also the sign of the interaction at short distances, which is ferromagnetic for Ep = —2.5,
changes to antiferromagnetic for £ = —1.05. Finally, the amplitude of oscillations with
along period is much smaller than that of oscillations with a short period. The long period
predicted by our model for £z = —1.05 and the initially antiferromagnetic coupling are
as observed by Parkin et al (1990) for Co/Ru structures,

It remains to estimate the magnitude of the effect. Parkin er a/ (1990) found J =
6 erg cm™2 for Co/Ru system with the thickness of the Ru layer of 3 A corresponding to
two Ru monolayers. Setting & = 3 in (3.5) and using the value £g = —1.05 leading to

long-range oscillations, we obtain
J=1ergem™? (5.1)

where we have used a typical value W = 3 eV for the band width W = 12|¢| of a transition
metal. Given the simplieity of the single-orbital model used, we consider this value of J
to be in pood agreement with the observed result.

Although the long-period oscillations for £r = —1.05 lead to an antiferromagnetic
sign of the coupling at short distances, ferromagnetic coupling at short distances com-
bined with a long period can also occur. This case occurs in our model when Eg is just
above the value Er = —1 and is illustrated in figure 3 where the exchange couplings for
Ee=—1.05and Ef = —0.95 are compared.
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Figure 3. Comparison of the exchange coupling J(N) for two different values of the Fermi
energy close to the Brillouin zone boundary: Er = —0.95 (circles) and E; = —1.05 (squares).
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Figure 4. Comparison between the asymptotic behaviour of the exchange coupling J{N)
obitained from (4.9) for Er = —1.05 {squares) and the exact result obtained from (3.5)
(circles).

To conclude this subsection, we show in figure 4 the exchange coupling J(N) for Eg =
~1.05 evaluated from the general asymptotic formula (4.9) (broken curve) together
with the exact result obtained from (3.5).

5.2. Temperature dependence of the exchange coupling

One of the most interesting and surprising results reported by Parkin er al (1990) is a
strong temperature dependence of the exchange coupling on the scale =102K. As
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Figure 5. Temperature dependence of the exchange coupling J(N) for Ep= =1.05: T=10
(cireles) and T = 50 K (squares}).

already discussed qualitatively in section 4, a temperature dependence on the same scale
is also predicted by our theory. It is interesting that a strong temperature dependence
of J goes, at least for our simple one-band model, hand in hand with a long period and
small amplitude of oscillations in the exchange coupling. This is because the temperature
dependence of J is determined by the velocity of carriers d&/ak, at the Fermi surface
which tends, together with the amplitude of oscillations, to zero when the Fermi surface
touches the zone boundary.

The exchange coupling f at T = 50 K determined from (4.9) is compared in figure 5
withJat T = (. Bothcurves are for Ex = —1.05. It can be seen that asignificant reduction
of J is obtained even at such a low temperature, Qur calculated temperature dependence
is stronger than observed by Parkin et al (1990). This is not surpnising since both the
amplitude and 3£/, are proportional for a simple cubic tight-binding band to the same
factor (Ep + 1)(Ep + 3), and we already know from section 5.1 that such a modet
underestimates the amplitude of J by a factor =6. The temperature dependence of J is,
therefore, overestimated by the same factor.

5.3. Direct calculation of the difference in energy between the ferromagnetic and anti-
ferromagnetic configurations

The most direct way of calculating the exchange coupling is clearly to compute by brute
force the difference in energy AQ between the ferromagnetic and antiferromagnetic
configurations of a sandwich/superlattice. This has been tried for Fe/Cr structures using
the local spin density functional (Levy et a/ 1990) and tight-binding (Hasegawa 1990)
methods. Stoeffler ef af (1991) and Stoeffler and Gautier (1991) also used tight-binding
approximation to calculate AE for Fe/V, Co/Pd, Co/Ru and Fe/Cr systems. All these
calculations are for spacer layers of several atomic planes only and the magnitude of the
exchange coupling J obtained by Levy et al (1990) and by Stoeffler et af (1991) and
Stoeffler and Gautier (1991) is much larger than observed. Hasegawa concluded that
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Figure 6. Exchange coupling J{N') obtained by direct evaluation of (3.3) using different
numbers of Cunningham special k-points in the two-dimensional Brillouin zone. Squares
are for 16640 k-points and circles are for 1050624 k-points. Both results are for E¢ = —1.05.

AE was too small to be determined accurately by his method. Moreover, the sign of J
changes in the calculations of Stoeffler er al (1991) over distances of two to three atomic
planes, which disagrees with the long periods observed by Parkin et af (1990) for Co/
Ru, Co/Cr and Fe/Cr. o

The exact asymptotic expansions we derived in sections 3 and 4 allow us to assess the
feasibility of direct calculations of J. Every such calculation is either for a slab (Levy et al
1990, Hasegawa 1990) or for a cluster of atoms (Stoeffler e o/ 1991). In slab calculations,
Brillouin zone summations over a two-dimensional zone have to be done numerically
and it turns out that these summations are the main factor that limits the accuracy of
such calculations.

In our approach, ‘brute-force’ caiculation of J means direct evaluation of (3.3) for
the total energy of carriers trapped in the spacer layer. This involves a two-dimensional
BZ sum over &,, k, which we evaluated using the method of Cunningham special points
(Cunningham 1974). Any discrete summation means that the wave vectors &, , k, effec-
tively become gquantized as if periodic (or other) boundary conditions were imposed
over a region with transverse dimension L. It is clear that to obtain reliable results fora
layered structure, the length L must be much larger than the thickness d. Taking L/d =
100 and N = 50, which is needed to see long-period oscillations, the number of k-points
in the two-dimensional zone is =2.5 x 107. However, even using this huge number of
ordinary k-space points the computed results for J amount to more or less random noise.
Even using Cununingham points we find that the correct oscillations of J only emerge
when we use as many as 108 points. This is illustrated in figure 6. We thus conclude that
direct evaluation of the exchange coupling J is possible but the size of a slab (cluster)
needed to reproduce long-period oscillations with the observed amplitude is several
orders of magnitude larger than those used in all existing calculations referred to above.
Even with N = 5 the number of points required to obtain a reliable value of J far exceeds
that used in any existing calculation.
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3.4. REKY for a simple cubic tight-binding band

We already discussed in general terms a connection between the asymptotic behaviour
of the exchange coupling obtained in our theory and RKKY in section 3. However, to
compare directly our numerical resuits discussed in section 5.1 with RKKY, we also
evaluated the RKXY response of a sC lattice gas to a plane of spins.

There are several ways of calculating the RKKY interaction in the planar geometry.
The most obvious method is to take the Fourier transform of the wavevector-dependent
susceptibility x(g) to obtain the RKKY range function in the direction perpendicular to
interacting planes. Taking the planes to be parallel to the (x, y) plane, the appropriate
Fourier transform is

1 *= .
Fz) = Ef x(qp=0,q.)e": dq, (5.2)

where g is the wavevector parallel to the (x, y) plane. This method was applied suc-
cessfully by Yafet (1987) to calculate the RKKY interaction in yttrium.

Another possibility is to calculate the exchange coupling of two (or more) planes of
spins by summing up pairwise the RKKY interactions of all the individual spins occupying
discrete lattice sites in the ferromagnetic planes. This method was first used by Fairbairn
and Yip (1990) and more recently by Baltensberger and Helman {1990).

A third method of calculating the response to a plane of spins is by solving the
corresponding scattering problem exactly; this yields the full non-linear response which
reduces to the linear RKKY response for weak coupling. We have adopted this last
approach. The effect of a plane of spins on electrons in a tight-binding band is modelled
by a potential V,, which is constant at each lattice site of a square lattice. The potential
V,is attractive (V4 = —V)) for up-spin carriers and repulsive (V; = V;) for down-spin
carriers. It is then straightforward to solve the Dyson equation for the one-particle
Green function G°:

G3 = G§ + G§V,G° (5.3)

where G§ is the Green function for the unperturbed sc tight-binding band (see Kalkstein
and Soven 1971). The local occupation numbers n{ for atomic planes i parallel to the
perturbing plane are then determined numerically from

n? = (1/n) f * TrIm G¢(q, E) dE (5.4)

where the trace is over the wavevector g) parallel to the perturbing plane which is taken
to be the (100) plane. The spin density S; = n! — n/ induced in the lattice gas by the
perturbing plane was evaluated numerically from (5.3) and (5.4) for V, = W/6, where
W is the band width. The results are shown in figure 7 for the same values of the Fermi
energy as in figure 3 (Ep = —1.05 and Er = —0.95). The most notable result is that the
period of RKKY oscillations in the spin density is exactly the same as in our theory of the
exchange coupling. The asymptotic decay of the oscillations is also the same as far as
one can tell from the data for 20 atomic planes (the accuracy becomes too poor for
i > 20-30 for the reasons discussed in section 5.3). However, the behaviour at short
distances is clearly model dependent and is different for our theory and RKKY. This
difference was already demonstrated analytically in the low-density limit in section 3.
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Figure 7. Spin density induced in a tight-binding lattice gas by a perturbing atomic plane at
N = 0. Resuits shown are for Ep = =0.95 (squares) and Ep —~ 1.05 (circles}).

6. Conclusions

Our results for the exchange coupling through a non-magnetic spacer layer can be
broadly classified into two categories, those that are model dependent and those that
are model independent.

Insections 2, 3 and 5 we proposed and investigated compre hensively a single-orbital
tight-binding model for the exchange interaction of two transition metal ferromagnets
separated by a non-magnetic transition metal spacer layer perpendicular to one of the
cubic axes.

In section 4 we derived a general asymptotic formula for the exchange coupling,
valid in the limit of a thick spacer layer. The results of section 4 apply to an arbitrary band
and arbitrary orientation of the spacer layer. They are also valid at finite temperatures.

The specific model investigated in sections 2, 3 and 5 contains a single adjustable
parameter: the position of the Fermilevel Er in the band. The main result obtained with
this mode is that the exchange coupling oscillates as a function of the thickness of the
spacer layer with a period that depends on the position of Ef in the band and becomes
infinite when the Fermi surface touches the zone boundary. Once the parameter Eg is
fixed to reproduce the observed long period of oscillations of the exchange coupling in
Co/Ru structures =10 atomic iayers, our model yields unique predictions for the initial
sign, amplitude, rate of decay and temperature dependence of the coupling. We find
that the initial strength of the coupling is J = 1 ergcm™2, which should be compared
with J = 6 erg cm ™2 obtained by Parkin et al (1990) for Co/Ru. The initial sign of J is
antiferromagnetic and the coupling decreases with increasing thickness of the spacer
layer as 1/N?2 Both these results are as observed by Parkin ef af (1990) for Co/Ru.
Finally, the calculated temperature dependence of J is strong, on the scale =10°K,
which is again in qualitative agreement with the results of Parkin e af (1990). For a fully
quantitative theory it is clearly necessary to extend our work to more realistic band
structures including both d and sp bands.
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The general asymptotic formula for J derived in section 4 reveals a close analogy
between oscillations of J as a function of the number of atomic planes N in the spacer
layer and de Haas—van Alphen oscillations of the susceptibility as a function of 1/B. As
in the de Haas—van Alphen effect, we find that the asymptotic behaviour of the exchange
coupling is completely determined by the properties of the Fermi surface in the spacer
layer. In particular, the period of oscillations is determined by the caliper measurement
of the Fermi surface in the direction perpendicular to the layers, the amplitude is
determined by the curvature of the Fermi surface at its extremal points and the tem-
perature dependence of the coupling is governed by the velocity of carriers at the
extremal points of the Fermi surface. The first result concerning the period of oscillations
is especially valuable. It can be used as a method for probing the Fermi surface comp-
lementary to the de Haas~van Alphen effect (caliper measurements of the Fermi surface
are obtained instead of extremal sections). Alternatively, a simple examination of a
known Fermi surface allows us 1o predict materials and orientations for which long-
period oscillations of J should be observable. Because the quantization in the present
problem is on a scale 10%-10° larger than in the de Haas—van Alphen effect, oscillations
of the exchange coupling are much more stable against temperature than de Haas—van
Alphen oscillations. It is, therefore, likely that they are also more robust against the
effects of impurities and alloying, in which case they could be used as a probe of Fermi
surfaces in alloys.

We also applied our exact asymptotic formula for J in section 5.3 to assess the
feasibility of direct calculations of the difference in energy between the ferromagnetic
and antiferromagnetic configurations of a sandwich with a non-magnetic spacer layer.
We find that such calculations are feasible for our single-orbital model, However, to
obtain long-period oscillations over 50 atomic planes we had to use a slab containing
more than 10% orbitals. This is several orders of magnitude greater than the size of
clusters/slabs used in previous calculations discussed in section 5.3 and we believe that
this is the main reason for all these calculations failing to reproduce the observed long-
period oscillations in J.

Finally, we wish to mention a connection between the oscillations of J obtained in
our theory and RKKY. Not surprisingly, our asymptotic results for large NV concerning
the period, rate of decay and even the temperature dependence of J are directly com-
parable with the asymptotic RKKY results obtained by Roth et af (1966) for a general
shape of the Fermi surface. It is only necessary to transpose their results to the appro-
priate planar geometry. However, the overall amplitude of the exchange coupling, and
its initial sign and behaviour at short distances are all model-dependent effects and
cannot be predicted from the conventional RKKY theory. Differences between our theory
and RKKY arise because our theory is non-perturbative, and hence non-linear, and it also
treats the interference effect of the two ferromagneticlayers. Both these features missing
in RKKY are especially important for small and even moderate thicknesses of the spacer
layer.
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