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Oscillations in the exchange coupling of ferromagnetic 
layers separated by a non-magnetic metallic layer 
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t Department of Mathematics, Imperial College of Science, Technology and Medicine, 
London SW7 ZBZ, UK 
$ Department of Mathematics, City University, Landon EClV O H B .  UK 

Received 14January 1591 

Abstract. A general theory of oscillations in the exchange coupling1 between two transition 
metal ferromagnets separated by a nonmagnetic transition metal spacer is developed. 
Detailed calculations of3 as a function of the spacer layer thickness are made for a specific 
model based on a simple cubic tight-binding band structure. For a suitable choice of band 
filling a good account is given of the main features observed in Co/Ru, &/Cr and Fe/Cr 
layered structures. An analysis of the numerical accuracy required in computing J from a 
total energy difference is given and this throws some light on difficulties experienced by 
previous workers using ihisapproach. Ageneralexpressionforlisobtained for anarbitrary 
band and finite temperature in the limit of large spacer thickness. A close analogy between 
oscillations in the exchange coupling andde Haas-van Alphen oscillations is established and 
the relation to RKKY theory is also discussed. It is shown that lhe period, asymptotic decay 
and temperature dependence of the oscillations in I are determined by properties of the 
Fermi surface of lhe spacer layer. 

I. Introduction 

Antiferromagnetic coupling between the iron layers in Fe/Cr/Fe sandwiches has been 
observed in light scattering experiments by Griinberg et a1 (1986) and confirmed by the 
SPLEED measurements of Carbone and Alvarado (1987). Similar behaviour was found 
inFe/Crsuperlattices, by meansofmagnetizationmeasurements and neutron diffraction 
(Baibich et a1 1988). Typically the antiferromagnetic coupling was observed in these 
experiments when the thickness of the chromium layer was less than 2&30 A. Recently 
Parkin et a1 (1990) reportcd longperiod oscillations in the exchange coupling as a 
function of the thickness of the non-magnetic layer in Co/Ru, Co/Cr and Fe/Cr super- 
lattice structures. Similar well-defined oscillations with a somewhat shorter period were 
observedearlier in Gd/Y superlattices byMajkrzaketal(1986) andinterpreted in terms 
of RKKY coupling by Yafet (1987). The oscillations observed by Parkin eta1 (1990) are 
also reminiscent Of RKKY oscillations but the period, 15-20 8, in allcases, isunexpectedly 
long. The observed coupling energy is far too large to be explained by magnetostatic 
interactions. The measurements of Parkin et a1 (1990) are particularly important since 
they provide us with a large number of specific results to be explained by theory. The 
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period, amplitude, initial sign, asymptotic rate of decay and temperature dependence 
of the coupling were all determined by Parkin eta1(1990) for Co/Ru, Co/Cr and Fe/Cr 
structures. 

Existing quantitative theories (Levy ef al1990, Hasegawa 1990, Stoefiler era1 1991) 
using realistic band structures are restricted to spacer layers of only a few atomic planes 
and are valid only at zero temperature. Calculations of the magnitude of the coupling 
by comparing the total energies of the ferromagnetic and antiferromagnetic con- 
figurations are numerically difficult (Hasegawa 1990) and do not lead to results of the 
correct order of magnitude (Levy ef all990, Stoefiler eta1 1991). Moreover, the physical 
origin of the computed effects remains obscure. 

In this paper we present a theory of the exchange coupling of two transition metal 
ferromagnets separated by a nonmagnetic transition metal spacer layer. The theory, 
even in its simplest form (Edwards and Mathon 1991), accounts qualitatively correctly 
for all the features of the exchange coupling observed by Parkin el a1 (1990). The origin 
of the effect is explained and it is made clear how the present theory can be used to 
predict specific materials and layer orientations for which long-period oscillations of the 
exchange coupling should occur. 

The plan of the paper is as follows. In section 2 a new mechanism of the exchange 
coupling across a transition metal spacer is proposed and a mathematical model of the 
coupling is formulated. The model is then applied in section 3 to a (100) sandwich with 
a simple cubic tight-binding band at T = 0. An exact analytic formula for the exchange 
coupling is derived and investigated for large thicknesses of the spacer layer. A con- 
nection with RKKY is also briefly discussed. In section 4 we consider a more general band 
and arbitrary layer orientations at finite temperatures. A close analogy between our 
theory and the theory of de Haas-van Alphen effect is established and a quite general 
asymptotic formula for the exchangecoupling isderived. It relatesthe period, amplitude, 
rateofdecay andtemperature dependenceofoscillationsin the coupling to the properties 
of the Fermi surface in the spacer layer. In section 5 the results of numerical calculations 
of the exchange coupling both at T = 0 and at finite temperatures using a simple cubic 
tight-binding band are presented and compared qualitatively with experiment. Also in 
section 5 the exact asymptotic results of sections 3 and 4, together with our own numerical 
studies, are used toexamine critically the existingnumerical calculationsof the exchange 
coupling referred to earlier. Finally, the formulation of the RKKY interaction for planar 
structures is discussed and the RKKY range function in the planar geometry is evaluated 
for a simple cubic tight-binding band. The results are compared with our theory of the 
exchange coupling. 

D M Edwards et a1 

2. Exchange coupling mechanism 

Weconsider a sandwich consisting of two thick layersof aferromagnetic transition metal 
separated by N atomic planes of a non-magnetic transition metal. The ferromagnetic 
metal is assumed tohave a full majority spin d band and a partially occupied spin minority 
d band. The nonmagnetic metal has equal numbers of holes in each spin sub-band. The 
spin sub-bands in the ferromagnetic and non-magnetic spacer layers, together with the 
hole densities p i  , p ', are shown schematically in figures l(a) and l(b) for the parallel 
and antiparallel orientations of the ferromagnetic layer moments. For simplicity we 
assume that the number of d holes per atom of each spin in the bulk nonmagnetic metal 
is equal to the number of holes in the bulk ferromagnetic metal. The basic mechanism 
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Figure 1. Schematic representationofthe densitiesotstates inthed bandandofthedensities 
of holes in a sandwich for ferromagnetic (a) and antiferromagnetic (b) alignments of the 
magnetic layers. 

for exchange coupling described below does not depend on this precise condition. 
However, it is a reasonable approximation to the actual situation in Fe/Cr, Co/Ru and 
Co/Cr systems. 

It is clear from figure 1 that deviations from bulk hole densities occur in the spacer 
layer near the interfaces with the ferromagnetic layers. For the parallel configuration, 
figure l(a), both interface effects occur in the 5 -spin hole density and, therefore, 
interfere witheach other. In the antiparallel configuration, however, the interface effects 
at each end of the spacer layer occur in opposite spin densities and no interference takes 
place. The exchange coupling between the ferromagnetic layers, which is given by the 
difference in energy between the two configurations, is therefore determined entirely 
by the interference effect in the down-spin band of the spacer layer. 

To investigate this effect quantitatively we use a single-orbital tight-binding Ham- 
iltonian 

H = C tijc~cio + Z Upit ni( (2.1) 
i i . 0  i 

where c z  creates a hole of spin U on site i and nio = c&ci,. We assume the hopping 
parameters tii are the same in both metals and U, = m for sites i in the ferromagnetic 
layers and Vi = 0 in the spacer layer. The choice U, = m in the ferromagnetic layers 
means that there exist exact single-determinant eigenfunctions of the Hamiltonian 
corresponding to the configurations shown in figures l ( a )  and l(b). This is because the 
interactions U, play no role; electrons of opposite spin completely avoid each other 
except in the spacer layer where U, = 0. The total energies of the two configurations 
may, therefore, be calculated as sums of one-electron energies. To do this, we initially 
maintain the bulk Fermi energy EF everywhere. It is convenient to introduce the total 
energy E,,,(N) of holes of one spin confined in N atomic planes and the energy EB per 
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Et  T = E d N )  + ( Z M  + N)EB 
E ,  t = E,,,(2M + 2N) .  

The energy difference is therefore 

A E ( N )  = ET 7 - E l  4 = E ( N )  - E(2M + 2N)  

atomic plane of holes of one spin in the bulk, If we suppose that each ferromagnetic 
layer in the sandwich contains M atomic planes, where M is large, then the energies of 
theconfigurations of figures l ( a )  and l(b) are, respectively, given by 

(2.2) 

(2.3) 

(2.4) 
where 

E ( N )  Etot(N) - NEB 
As M - t  00, 

A E ( N )  = E ( N )  - E(=) 
andclearlyfrom (2.5) E ( N )  may beconsi . . . .  . redastheenergyofhi sofonespinconfined 
to N atomic planes measured relative to an N-plane reference state with bulk density. 
Thus E ( N )  describes only the end effects and &e energy difference in (2.6) corresponds 
just to the energy associated with the interference between the two end effects. 

To conserve the number of particles in calculating the energy difference we must 
consider the changesin the number of holes that result from keeping EF fixed. If v ( N )  
is the number of holes of one spin confined in N atomic planes and nB is the number of 
holes per bulk plane, we define 

(2.7) 
in analogy with (2.5).  We now introduce the thermodynamic potential 

(2.8) 
which,likeE(N),ismeasuredrelative toareferencestatewithNbulkplanes. Inanalogy 
with (2 .6)  the energy difference between the ferromagnetic and antiferromagnetic 
configurations of the sandwich with particle numbers conserved is given by 

n ( N )  = v ( N )  - Nn, 

Q ( N )  = E ( N )  - E,n(N) 

A Q ( N )  = Q ( N )  - Q(m). (2.9) 
Following Parkin ef a1 (199O), we define an exchange coupling constant for a spacer 

layer containing N atomic planes by 

J ( N )  = A Q ( N ) / A  (2.10) 
where A is the area of an atomic plane. 

The above considerations are readily generalized to a superlattice with alternating 
magnetic and non-magnetic layerscontaining, respectively, M and Natomic planes. The 
energy difference per magnetic layer between the ferromagnetic and antiferromagnetic 
configurations is then 

Q ( N )  - Q(2N + M ) .  (2.11) 
The difference between this result and A Q ( N )  given by (2.9) is small for large M .  Even 
for smaU M the difference is not significant for large N since it emerges in section 3 that 
Q ( N )  = l / N z  and hence 

lQ(N) - Q ( W I  = (3 /4 )  IQ(N) - Q(=)l. (2.12) 
In this paper we focusour attention primarily on A Q ( N )  given by (2 .9) .  
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In the next section we calculate Q ( N ) ,  and hence J ( N ) ,  for a simple cubic band at 
T = 0 and in section 4 we consider a more general situation at finite temperatures. 

3. Model with a simple cubic tight-binding band at T = 0 

We consider a simple cubic lattice with basic vectors a(l,O, 0), a(O,l, 0) and a(O,O, 1) 
and take the atomic planes of the sandwich to be perpendicular to the third of these 
vectors. We take t,i = f (t < 0) for i, j nearest neighbours and tii = 0 otherwise. It is 
convenient to consider a non-magnetic layer with N - 1 atomic planes rather than N 
and we label them by integers 1,2, . . . , N - 1. To calculate Q ( N  - 1) we must consider 
the electrons as confined within the non-magnetic layer so that their wave functions 
vanish on planes 0 and N .  The normalized wave functions are, therefore, of the form 

= = N-1 

(3.1) 
rxP exp[i(k,l + k,m)a] sin - Ilmp) 

I=-= m=-’ p = l  N 

where [imp) is the orbital on site a(1, m, p )  and the wave function is classified by the two- 
dimensional wave vector (kx, ky) and a discrete quantum number r = 1,2, . . ., N - 1. 
The corresponding one-electron energy is 

e(k,, k y ,  r) = -(cos(rx/N) + cos(k,a) + cos(k,a)). (3.2) 

Throughout this section we measure all energies in units of 21fl. Clearly at T = 0 

Q,,,(N - 1) = Q ( N  - 1) + QL,,(N - 1) 

= (&(k, ,  k,, r )  - EF) - & ( k x ,  k,, 7)) (3.3) 
r .kx.ku 

where O(x) is the unit step function and 

Q d N  - 1) = ( N  - ~ ) ( E E  - ~ E E F )  (3.4) 
corresponds to the reference state. This term just cancels the part of the right-hand side 
of (3.3) that is proportional to N - 1, and the part that tends to a constant as N +  m 

cancels out in calculating A Q ( N  - 1) from (2.9). Hence A Q ( N  - 1) is given by the part 
of Q,,,,(N - 1) that tends to zero as N +  m. 

The summation over kr, ky in (3.3) can be turned into an energy integral involving 
the two-dimensional density of states N2D(E)  

Q,,,(N - 1) = 

N- I 1 dENzD(E)(-cos(rx/N) + E - EE)B(EF + cos(rx/N) - E ) .  
I =  1 

(3.5) 
This expression may be used to determine A Q ( N  - 1) numerically, as is discussed in 
section 5 .  However, it is instructive to obtain some analytical results by approximating 
the density of states &,(E) as follows: 

Here,NIIisthenumber of latticesitesinone atomicp1ane.Thisisanexact representation 
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of N,,(E) at the band edges but underestimates it elsewhere. However, numerical 
calculations show that such an approximation reproduces all the essential features of 
A Q ( N  - 1) when -3 < EF < -1. Furthermore, with thisapproximation the asymptotic 
form of A Q ( N  - 1) for large N is obtained exactly. We now proceed to evaluate Q1,, for 
-3 < EF < -1 with the approximation (3.6). 

On evaluating the integral in (3.5) we find 

D M Edwards et a1 

(3.7) 

with 

f(x) = ( c o s ~ ( n x / ~ )  + 2 a  C O S ( X ~ / N )  + a') e(E - x )  (3.8) 

= ( N / n )  COS-'(-(Y) O S E < N .  (3.9) 

where (Y = EF + 2 and 

The summation in (3.7) may be carried out explicitly but the result is not very illumi- 
nating. It is more convenient to use the Poisson summation formula 

T r 

+ E f ( r )  = g(0) + 2 g ( b s )  (3.10) 
r= I I =  I 

(3.11) 

2sin(Et) 2a2 - 1 - (Yz 6 N ( ~ ( l  - m2)'D cos(@ 
g ( f ) = y ( ( N f / x ) z  - 4  ( N f / r ) ' - I )  + z [ ( N f / n ) 2  - l][(Nr/~)~ -41 '  

(3.12) 
As discussed earlier A Q ( N  - 1) is the part of Q,,,t(N - 1) that tends to zero as N +  m 
and this corresponds to replacing the sum in (3.7) by the last term of (3.10). Hence 

N i  
AQ( N - 1) = - E g(2ns). 

2n,=, 
(3.13) 

For a spacer layer containing more than about three atomic planes it is a good approxi- 
mation to use the asymptotic form of each term in (3.12) thus neglecting terms of the 
order l/N4. Using(3.9)and(2.10) withA = N,a*,wethenobtaintheexchangecoupling 
J ( N  - 1) in the form 

( E F + l ) ( E F + 3 ) ,  b s N  
sin - 

7 .  1 

N P  
J ( N  - 1) 

- _  3 (EF+2)[-(EF+ l)(EF+ 3 ) ] i / 2 c o s ~ ~  
2Ns4 NP 

(3.14) 

where + holds for EF > -2 and - holds for EF < -2, and N p  is given by 

(3.15) 
As EF+ -1, J ( N -  l ) + O  and, in fact, we find that in the present approximation 

N p  = n/cos-'/2 + EFI. 
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AB(N - 1) = Othroughout theregion -1 < EF < 0. However,itwillbeshowninsection 
4 that the latter result is the consequence of the approximation (3.6) to N,,(E). 

It is clear from (3.14) that the exchange couplingJoscillates with period Np and with 
an amplitude that decays as l/Nz for large N. The period becomes long when EFis near 
-3 or -1.  The former case corresponds to a very low hole density with a small almost 
spherical Fermi surface. The latter case is more interesting and corresponds to the Fermi 
surface nearly touching the zone boundary. In the present model the coupling strength 
weakens as the period lengthens because of the factor (EF + l)(EF + 3) in (3.14). The 
relation between the period and the caliper measurement of the Fermi surface, and 
between the amplitude and the cuwature of the Fermi surface at its extrema1 points, is 
discussed for a general band in section 4. An asymptotic expression forJ( N - l), correct 
to order l/Nz, is derived there for a general band. It agrees with the first term of (3.14) 
for the present model. The close relationship between this asymptotic result and RKKY 
coupling is also discussed in section 5 .  From the RKKY point of view the overall strength 
ofthecoupling should dependon aproduct of the appropriate susceptibilityofthe spacer 
layer material and the square of the exchange coupling between the magnetic and non- 
magnetic layers. It is not clear how to calculate the latter coupling in general and an 
advantage of the present method is that this problem does not arise. The numerical 
calculations described in section 5 show that the overall strength of the coupling J 
obtained in our approach is of the right order of magnitude to agree with experiment. 

Finally we point out that the close correspondence with RKKY is restricted to the 
asymptotic limit where only terms of order 1/N2 are important. This is clearly seen in 
the low-density limit when EF + 3 is small. The spacer layer of thickness d = Nu 
then corresponds to a gas of holes with a spherical Fermi surface of radius kF given by 
k:az/2 = EF + 3. The leading term (s = 1) in the sum (3.14) is then equal to a positive 
constant times a factor 

(3.16) 

A simple RKKY theory of the exchange coupling between two planes of spins, distanced 
apart, in the same spacer medium yields the following expression for the corresponding 
factor: 

(3.17) 

- (1/d2) (sin(2kFd) + 3 cos(2kFd)/2kFd). 

- (l/d2) (sin(2kFd) - cos(2kFd)/2kFd). 

4. Generalization of the model to an arbitrary hand and finite temperatures 

We showed in section 3 that the calculation of the exchange coupling in a sandwich 
reduces to the calculation of the total energy of carriers trapped in the non-magnetic 
spacer by the exchange potentials of the ferromagnetic layers. Since the exchange 
potentials are equivalent in our model to two infinitely high potential bamers, we simply 
require the dependence of the total energy of size-quantized carriers in a layer of N - 1 
atomic planes on the thickness of the layer d = Nu. This is a familiar problem in the 
theory ofthe de Haas-vanAlphen effect. In thecaseofdeHaas-van Alphenoscillations, 
the carrier energy is quantized by a magnetic field in a plane perpendicular to the 
field whereas, in the present problem, oae-dimensional quantization in the direction 
perpendicular to the sandwich is induced by the exchange potential. 

It is well known that the amplitude, period and temperature dependence of de H a a o  
van Alphen oscillations are linked directly to the shape of the Fermi surface. It is our 
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aimtoshow that asimilargeneralrelationshipexists betweenoscillationsoftheexchange 
coupling and the shape of the Fermi surface of carriers in the spacer layer. 

Our calculation is an adaptation of the conventional theory of the de Haas-van 
Alphen effect (see, e.g., Abrikosov 1972). As in section 3, we consider the thermo- 
dynamic potentia1 of carriers confined in the spacer layer 

D M Edwards et a1 

where !J is the chemical potential, E(k, r) is the carrier energy, k is the wavevector 
parallel to the sandwich, and r labels the size-quantized levels (k, = 1). At T =  0, we 
have p = EF and (4.1) clearly reduces to Q,,, defined in section 2. 

To evaluate the sum in (4. l) ,  we need to know the explicit dependence of E(k,  r) on 
the discrete quantum number r. Without loss of generality, we may assume that k lies in 
the (x, y )  plane and quantization takes place in the z direction. We then know from 
section 3 that the quantization of the energy for a sc tight-binding band reduces to the 
quantization k; = rx/Na in the expression for the bulk energy .c(kr, ky. kJ. One can 
easily show that the same quantization holds for any single band and any orientation of 
the sandwich. Hence we have quite generally 

k,, r) = dk, ,  k,, r d N 4  (4.2) 
where a is the scparation between two neighbouring atomic planes in the spacer layer. 

As in section 3, we can replace the sum over r in (4.1) by an integral using Poisson's 
summation formula and use the result already proved in section 3 that the oscillatory 
contribution to Q0, is in fact the required exchange energy AQ. The exchange energy 
per unit area is, therefore, given by 

x IoN-' d <  ln{l + exp[(p - E(k,, k,, b/No))/T]}exp(2&') (4.3) 

where the integral with respect to k,, k, is over the two-dimensional Brillouin zone in 
the sandwich plane. 

After integration by parts the real part of the integral over < becomes: 

(4.4) 

To obtain (4.4) we used the result that the Fermi function is approximately zero for E at 
the top of the band. This is valid provided the distance from the Fermi level to the top 
of the band is much larger than T. 

We can now change the integration over f to an integration over energy. The 
exchange coupling then takes the form 

1 1 N-I 
J = - -Re 'c -1 d&{l + exp[(E - p ) / T ] } - '  II dk, dk, exp(2irN~k~).  (4.5) 4z3 $=,SI 

BZ 

We shall next evaluate the two-dimensional integral with respect to kx, k;: The com- 
ponent k, in this integration isa dependent variable and we can use the bulk tight binding 
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energy formula E(k,, ky, k,) to express k, k2(E, k,, k,). It is clear that for large N the 
factor exp(ZkNak,) is a rapidly oscillating function and only those regions in the (kx, k,) 
plane in which k, is stationary with respect to k,, k, will make significant contributions 
to the integral. We can, therefore, apply the method of stationary phase in which the 
required integral is approximated by expanding k, in a Taylor series about its stationary 
points up to second-order terms. 

Let us assume that (k!(E), k:(E)) is a stationary point. It can be always achieved by 
a suitable rotation in the (kx, k,) plane that the Taylor expansion about (k:(E), ky(e)) 
takes the simple form 

k ( E 7  k,, k,)  = M E ,  k:, k j )  + I[(a2k,/dk:)(k! - /c,)~ 

+ (J2k,/Jk:)(kj - k,)’] + .  . ,. (4.6) 

When this result is substituted in (4.5) the two-dimensional integral in the (kr, k,) plane 
separates into two independent integrals with respect to k, and ky and each of them can 
he evaluated exactly. We obtain 

2k,d2k, -U2 11 dk, dk, exp(ZkNak,) = U- 3c I d  -- I exp(2iNak:) 
sNa ak: ak: 

BZ 

(4.7) 

where k: is the stationary value of k, and both the partial derivatives are taken at the 
stationarypoint ( k : ( ~ ) ,  k;(&)). The factor oisequal toexp(iz/Z) when bothderivatives 
in (4.7) are positive, it  is equal to exp(-in/Z) when they are negative and U = 1 when 
the two derivatives have opposite signs. 

It remainstoperform theenergyintegralin (4.5). The integrandcontainstheproduct 
of the Fermi function and the factor exp(2kNuk:) which dependson energy via k!. The 
region in which the Fermi function is essentially constant does not contribute to the 
integral because of rapid oscillations of the function exp(2isNk:). The only significant 
contribution comes from a narrow interval around the Fermi surface where the Fermi 
function varies rapidly. Since k: is a slowly varying function in this interval, it can he 
expanded about .U: 

k:(E) = k!(p) + (dk,/aE)(& -.U) + . . .. (4.8) 

Substituting the expansion (4.8) and the result (4.7) in (4.5) it is straightforward to 
evaluate the energy integral in (4.5). This leads to the following general asymptotic 
formula for the exchange coupling J defined by (2.10): 

where all the derivatives are taken at the stationary point and for E = p.  Naturally, the 
contributions of all the stationary points of k, need to be included in (4.9). 

It is clear from (4.9) that J(N) oscillates with a period Np given by 

Np = n/ak;(P) (4.10) 

where k:(,u) is the caliper measurement of the Fermi surface in the direction per- 
pendicular to the layers. The tempera:ure depecdence ofJis determined by the velocity 
of carriers at the stationary points on the Fermi surface and the oscillation amplitude by 
the curvature of the Fermi surface at the stationary points. 
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As an illustration, and as a check on the general formula (4.9), we now apply it at 
T =  0 to the simple cubic band already investigated in section 3. We assume again that 
the L direction is normal to the layers and dong a cubic axis. The Fermi surface for such 
a band is given by 

(4.11) 

It is. therefore, clear that the stationary points of k,(EF, k,, ky) are at (O,O), (0, %?/a), 
(-c.z/a, 0) and (*x/u, +x/a). Since the band is symmetric about E = 0, there are just 
two cases to be considered: -3 < EF < -1 and - 1 < EF < 0. In the former case, the 
only relevant stationary point is k, = k, = 0. Evaluating all the required derivatives in 
(4.9) at this point we find that both the second derivatives are negative, which means 
that o = -i. Taking then the limit T- 0, it is straightforward to show that (4.9) reduces 
exactly to the first term in (3.14) of section 3. 

Consider now the interval -1 < EF < 0. Using the approximation of a constant two- 
dimensional density of states (DOS), we found in section 3 no exchange coupling in this 
interval. This is because the constant two-dimensional DOS corresponds to a band with 
a parabolic dispersion in the (kr, kJ plane and it is clear from (4.11) that k, for such a 
band has no extremum at k, = ky = 0 for EF > -1. The exact treatment of the band 
(4.11) for -1 < EF c: 0 shows that additional extrema occur at (0, i n l a )  and (+x/a,  0) 
and they are, in fact, the only extrema in this range of EF. It is easy to show that the 
sccond derivatives in (4.9) have opposite signs at all these stationary points (saddle 
points), which means that U = 1. Hence, in the range - 1 < EF < 0, the asymptotic 
formula for J at T = 0 becomes 

EF = -(cos(k,a) + cos(k,a) + cos(k,a)). 

(4.12) 

where the oscillation period N p  is defined by 
Np = x/cos-’/EF/. (4.13) 

It is clear that oscillations of the exchange coupling with a long period occur not only for 
EF < -1 (as already shown in section 3) but also for EF > - 1, 

We shall now return to the general formula (4.9). One can see from (4.9) that the 
amplitude ofoscillationsin theexchange coupling decreases with increasingtemperature 
in the same way as the amplitude of de Haas-van Alphen oscillations. In fact, the sinh 
factor has exactly the same form as in the de Haas-van Aiphen effect (Abrikosov 1972) 
if we make the correspondence 

(N/n)  a(k:a)/ap+ l/hmc (4.14) 
where w, is the cyclotron frequency. Hence the equivalent ‘cyclotron’ frequency in the 
present problem is fiuc = W/2N, where U’ is the band width. For N = 5-10 and W = 
3 eV, we have hw, = lo3 K corresponding to an equivalent field of about 103T. Taking 
account of the numerical factors in the sinh factor, the temperature dependence our 
theory predicts is on the scale =lo2 K. as observed by Parkin el a1 (1990). 

5. Numerical studies for the simple cubic hand and comparison with experiment 

5, I. E.~change coupling at short distances 

The general asymptotic formula (4.9) becomes poor for spacer layer thicknesses <5-10 
atomic planes. To determine the initial sign and initial strength of the exchange coupling 
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Figure% Comparison of the amplitudes and periods of oscillations in the exchange coupling 
I as a function of the number of atomic planes Nin the spacer layer for two diiferent fillings 
of the band: EF = -2.5 (squares) and EF = -1.05 (circles). 

J ( N ) ,  we need to evaluate numerically either (3.3) or (3.5). Direct evaluation of R,, in 
(3.5) using the full two-dimensional tight-binding density of states for a square lattice is 
straightforward and the J ( N )  curves for two values of the Fermi energy EF = -2.5 and 
EF = -1.05 are shown in figure 2. 

There are three important differences between the two curvesJ(N) shown in figure 
2. For the lower value of EF the period is only three atomic planes but it becomes ten 
atomicplanesforEF = -1.05 when theFermisurfacenearly touches thezone boundary. 
Also thesignofthe interaction at short distances, which isferromagneticfor EF = -2.5, 
changes to antiferromagneticfor& = -1.05. Finally, theamplitudeofoscillations with 
alongperiodismuchsmallerthan that ofoscillationswithashortperiod. Thelongperiod 
predicted by our model for EF = - 1.05 and the initially antiferromagnetic coupling are 
as observed by Parkin eta1 (1990) for Co/Ru structures. 

It remains to estimate the magnitude of the effect. Parkin et ol (1990) found J = 
6 ergcm-2 for Co/Ru system with the thickness of the Ru layer of 3 A corresponding to 
two Ru monolayers. Setting N =  3 in (3.5) and using the value EF = -1.05 leading to 
long-range oscillations, we obtain 

I = 1 erg (5.1) 

where we have used a typical value W = 3 eV for the band width W = 12jtl of a transition 
metal. Given the simplicity of the single-orbital model used, we consider this value of J 
to be in good agreement with the observed result. 

Although the long-period oscillations for EF = -1.05 lead to an antiferromagnetic 
sign of the coupling at short distances, ferromagnetic coupling at short distances com- 
bined with a long period can also occur. This case occurs in our model when EF is just 
above the value EF = - 1 and is illustrated in figure 3 where the exchange couplings for 
.EF = -1.05 and EF = -0.95 are compared. 



4952 D M Edwards et ai 

0.3 
+ 
4: 0.2 
X - 0.1 
4 -~ 2 0.0 - 

-0.1 

-0.2 
0 10 20 30 40 50 

N 
Figure 3. Comparison of the exchange coupling I ( N )  for two different values of the Fermi 
energyclosetotheBrillouinzoneboundary:E, = -0.95(circles)andEF = -l.OS(squares). 
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Figure 4. Comparison between thc asymptotic behaviour of the exchange coupling J ( N )  
obtained irom (4.9) for E, = -1.05 (squares) and the exact result obtained from (3.5) 
(circles) 

To conclude thissubsection, we show in figure 4 the exchange couplingJ(N) for EF = 
-1.05 evaluated from the general asymptotic formula (4.9) (broken curve) together 
with the exact result obtained from (3.5). 

5.2.  Temperature dependence of !he exchange coupling 
One of the most interesting and surprising results reported by Parkin et al(1990) is a 
strong temperature dependence of the exchange coupling on the scale =lo2 K. As 
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N 
Figure 5. Temperature dependence of the exchange coupling J ( N )  for EF = -1.05: T =  0 
(circles) and T =  SO K (squares). 

already discussed qualitatively in section 4, a temperature dependence on the same scale 
is also predicted by our theory. It is interesting that a strong temperature dependence 
of J goes, at least for our simple one-band model, hand in hand with a long period and 
small amplitude of oscillations in the exchange coupling. This is because the temperature 
dependence of J is determined by the velocity of carriers dE/ak ,  at the Fermi surface 
which tends, together with the amplitude of oscillations, to zero when the Fermi surface 
touches the zone boundary. 

The exchange coupling J at T = SO K determined from (4.9) is compared in figure 5 
withJat T =  0. BothcurvesareforEF = -1.05. Itcanbeseenthatasignificantreduction 
OfJisobtainedeven at such alow temperature. Our calculated temperature dependence 
is stronger than observed by Parkin et a1 (1990). This is not surprising since both the 
amplitude and d&/ak, are proportional for a simple cubic tight-binding band to the same 
factor (EF + l)(EF + 3). and we already know from section 5.1 that such a model 
underestimates the amplitude of J by a factor =6. The temperature dependence of J is, 
therefore, overestimated by the same factor. 

5.3. Direct calculation of the difference in energy between the ferromagnetic and anti- 
ferromagnetic configurations 

The most direct way of calculating the exchange coupling is clearly to compute by brute 
force the difference in energy AQ between the ferromagnetic and antiferromagnetic 
configurations of a sandwich/superlattice. This has been tried Cor Fe/Cr structures using 
the local spin density functional (Levy et al 1990) and tight-binding (Hasegawa 1990) 
methods. Stoeffler et a1 (1991) and Stoeffler and Gautier (1991) also used tight-binding 
approximation to calculate AE for Fe/\’, Co/?d, Co/Ru and Fe/Cr systems. All these 
calculations are for spacer layers of several atomic planes only and the magnitude of the 
exchange coupling J obtained by Levy et a1 (1990) and by Stoeffler et a1 (1991) and 
Stoeffler and Gautier (1991) is much larger than observed. Hasegawa concluded that 
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Figure 6. Exchange coupling J ( N )  obtained by direct evaluation of (3.3) using different 
numbers of Cunningham special k-points in the two-dimensional Brillouin zone. Squares 
are for 16640k-pointsandcirclesarefor 1050624k-pints. Both resultsarefor EF = -1.05, 

A E  was too small to be determined accurately by his method. Moreover, the sign of J 
changes in the calculations of Stoefaer et al(l991) over distances of two to three atomic 
planes, which disagrees with the long periods observed by Parkin et a1 (1990) for CO/ 
Ru,Co/CrandFe/Cr. 

The exact asymptotic expansions we derived in sections 3 and 4 allow us to assess the 
feasibility of direct calculations of J. Every such calculation is either for a slab (Levy eta1 
1990, Hasegawa 1990) or for a cluster of atoms (Stoefaer etal1991). In slab calculations, 
Brillouin zone summations over a two-dimensional zone have to be done numerically 
and it turns out that these summations are the main factor that limits the accuracy of 
such calculations. 

In our approach, 'brute-force' calculation of J means direct evaluation of (3.3) for 
the total energy of carriers trapped in the spacer layer. This involves a two-dimensional 
BZ sum over kx, ky which we evaluated using the method of Cunningham special points 
(Cunningham 1974). Any discrete summation means that the wave vectors k,, ky effec- 
tively become quantized as if periodic (or other) boundary conditions were imposed 
over a region with transverse dimension L. It is clear that to obtain reliable results for a 
layered structure, the length L must be much larger than the thickness d. Taking L/d = 
100 and N = 50, which is needed to see long-period oscillations, the number of k-points 
in the two-dimensional zone is =2.5 X 10'. However, even using this huge number of 
ordinary k-space points the computed results for Jamount to more or less random noise. 
Even using Cunningham points we find that the correct oscillations of J only emerge 
when we use as many as 106points. This is illustrated in figure 6. We thus conclude that 
direct evaluation of the exchange coupling J is possible but the size of a slab (cluster) 
needed to reproduce long-period oscillations with the observed amplitude is several 
orders of magnitude larger than those used in all existingcalculations referred to above. 
Even with N = 5 the number of points required to obtain a reliable value ofJ far exceeds 
that used in any existing calculation. 
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5.4.  R K K Y f O r  a simple cubic tight-binding band 

We already discussed in general terms a connection between the asymptotic behaviour 
of the exchange coupling obtained in our theory and RKKY in section 3. However, to 
compare directly our numerical results discussed in section 5.1 with RKKY, we also 
evaluated the RKKY response of a SC lattice gas to a plane of spins. 

There are several ways of calculating the RKKY interaction in the planar geometry. 
The most obvious method is to take the Fourier transform of the wavevector-dependent 
susceptibility ~ ( q )  to obtain the RKKY range function in the direction perpendicular to 
interacting planes. Taking the planes to be parallel to the (x, y) plane, the appropriate 
Fourier transform is 

where 411 is the wavevector parallel to the ( x ,  y )  plane. This method was applied suc- 
cessfully by Yafet (1987) to calculate the RKKY interaction in yttrium. 

Another possibility is to calculate the exchange coupling of two (or more) planes of 
spins by summing up painvise the RKKY interactions of all the individual spins occupying 
discrete lattice sites in the ferromagnetic planes. This method was first used by Fairbaim 
and Yip (1990) and more recently by Baltensberger and Helman (1990). 

,A third method of calculating the response to a plane of spins is by solving the 
corresponding scattering problem exactly; this yields the full non-linear response which 
reduces to the linear RKKY response for weak coupling. We have adopted this last 
approach. The effect of a plane of spins on electrons in a tight-binding band is modelled 
by a potential V, which is constant at each lattice site of a square lattice. The potential 
V,  is attractive ( V ,  = -Vo) for up-spin carriers and repulsive ( V i  = V,) for down-spin 
carriers. It is then straightforward to solve the Dyson equation for the one-particle 
Green function G": 

Gp = Gg f GgV,G" (5.3) 

where Gp is the Green function for the unperturbed sc tight-binding band (see Kalkstein 
and Soven 1971). The local occupation numbers np for atomic planes i parallel to the 
perturbing plane are then determined numerically from 

EF 
n; = (l/sc) 1 TrIm G:(qll, E )  dE (5.4) 

-D 

where the trace is over the wavevector 411 parallel to the perturbing plane which is taken 
to be the (100) plane. The spin density S, = n,' - n! induced in the lattice gas by the 
perturbing plane was evaluated numerically from (5.3) and (5.4) for V,, = W/6, where 
W is the band width. The results are shown in figure 7 for the same values of the Fermi 
energy as in figure 3 (EF = -1.05 and E ,  = -0.95). The most notable result is that the 
period of RKKY oscillations in the spin density is exactly the same as in our theory of the 
exchange coupling. The asymptotic decay of the oscillations is also the same as far as 
one can tell from the data for 20 atomic planes (the accuracy becomes too poor for 
i > 20-30 for the reasons discussed in section 5.3). However, the behaviour at short 
distances is clearly model dependent and is different for our theory and RKKY. This 
difference was already demonstrated analytically in the low-density limit in section 3. 



4956 D M Edwards et a1 

h 
Lo 
t 
C 
3 

t. 
e 
+? 
t 

0 v 

1. 
t 
Lo 
C 
m 

C 

IA 

n 

a .- 

0 5 10 15 20 

N 
Figure 7. Spin density induced in a tight-binding lattice gas by a perturbing atomic plane at 
N = 0. Re~ultsshown are for EF = -0.95 (squares) and EF - 1.05 (circles). 

6. Conclusions 

Our results for the exchange coupling through a non-magnetic spacer layer can be 
broadly classified into two categories, those that are model dependent and those that 
are model independent. 

In sections 2,3 and 5 we proposed and investigated comprehensively a single-orbital 
tight-binding model for the exchange interaction of two transition metal ferromagnets 
separated by a non-magnetic transition metal spacer layer perpendicular to one of the 
cubic axes. 

In section 4 we derived a general asymptotic formula for the exchange coupling, 
validin thelimit of a thickspacer layer.The resultsof sectionjapply toanarbitrary band 
and arbitrary orientation of the spacer layer. They are also valid at finite temperatures. 

The specific model investigated in sections 2 ,3  and 5 contains a single adjustable 
parameter: the position of the Fermi level EF in the band. The main result obtained with 
this model is that the exchange coupling oscillates as a function of the thickness of the 
spacer layer with a period that depends on the position of E, in the band and becomes 
infinite when the Fermi surface touches the zone boundary. Once the parameter E ,  is 
fixed to reproduce the observed long period of oscillations of the exchange coupling in 
Co/Ru structures =10 atomic layers, our model yields unique predictionsfor the initial 
sign, amplitude, rate of decay and temperature dependence of the coupling. We find 
that the initial strength of the coupling is J = 1 erg cm-’, which should be compared 
with J = 6 erg cm-’ obtained by Parkin et a1 (1990) for Co/Ru. The initial sign of J is 
antiferromagnetic and the coupling decreases with increasing thickness of the spacer 
layer as 1/N2. Both these results are as observed by Parkin el a/ (1990) for Co/Ru. 
Finally, the calculated temperature dependence of J is strong, on the scale =IOz K, 
which is again in qualitative agreement with the results of Parkin el al(l990). For a fully 
quantitative theory it is clearly necessary to extend our work to more realistic band 
structures including both d and sp bands. 
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The general asymptotic formula for J derived in section 4 reveals a close analogy 
between oscillations of J as a function of the number of atomic planes N in the spacer 
layer and de Haas-van Alphen oscillations of the susceptibility as a function of 1/B. As 
in the de Haas-van Alphen effect, we find that the asymptotic behaviour of the exchange 
coupling is completely determined by the properties of the Fermi surface in the spacer 
layer. In particular, the period of oscillations is determined by the caliper measurement 
of the Fermi surface in the direction perpendicular to the layers, the amplitude is 
determined by the curvature of the Fermi surface at its extremal points and the tem- 
perature dependence of the coupling is governed by the velocity of carriers at the 
extremalpointsof theFermisurface. The first resultconcerningtheperiodofoscillations 
is especially valuable. It can be used as a method for probing the Fermi surface comp- 
lementary to the de Haas-van Alphen effect (caliper measurements of the Fermi surface 
are obtained instead of extremal sections). Alternatively, a simple examination of a 
known Fermi surface allows us to predict materials and orientations for which long- 
period oscillations of J should be observable. Because the quantization in the present 
problem is on a scale 102-103 larger than in the de Haas-van Alphen effect, oscillations 
of the exchange coupling are much more stable against temperature than de Haas-van 
Alphen oscillations. It is, therefore, likely that they are also more robust against the 
effects of impurities and alloying, in which case they could be used as a probe of Fermi 
surfaces in alloys. 

We also applied our exact asymptotic formula for J in section 5.3 to assess the 
feasibility of direct calculations of the difference in energy between the ferromagnetic 
and antiferromagnetic configurations of a sandwich with a non-magnetic spacer layer. 
We find that such calculations are feasible for our single-orbital model. However, to 
obtain long-period oscillations over 50 atomic planes we had to use a slab containing 
more than lo8 orbitals. This is several orders of magnitude greater than the size of 
clusters/slabs used in previous calculations discussed in section 5.3 and we believe that 
this is the main reason for all these calculations failing to reproduce the observed long- 
period oscillations in J .  

Finally, we wish to mention a connection between the oscillations of J obtained in 
our theory and RKKY. Not surprisingly, our asymptotic results for large N concerning 
the period, rate of decay and even the temperature dependence of J are directly com- 
parable with the asymptotic RKKY results obtained by Roth ef a1 (1966) for a general 
shape of the Fermi surface. It is only necessary to transpose their results to the appro- 
priate planar geometry. However, the overall amplitude of the exchange coupling, and 
its initial sign and behaviour at short distances are all model-dependent effects and 
cannot be predicted from the conventional RKKY theory. Differences between our theory 
and RKKY arise because our theory is non-perturbative, and hence non-linear, and it also 
treats theinterference effect of the twoferromagneticlayers. Both these features missing 
in RKKY are especially important for small and even moderate thicknesses of the spacer 
layer. ' 
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